import queue import copy import re import threading #渗透测试树结构维护类 class AttackTree: def __init__(self,root_node): #针对根节点处理 self.root = root_node self.root.path = f"目标系统->{root_node.name}" def set_root(self,root_node): self.root = root_node def add_node(self,parent_name,new_node): """根据父节点名称添加新节点""" parent_node = self.find_node_by_name(parent_name) if parent_node: parent_node.add_child(new_node) return True return False def traverse_bfs(self): """广度优先遍历""" if not self.root: return [] queue = [self.root] result = [] while queue: current = queue.pop(0) result.append(current) queue.extend(current.children) return result def traverse_dfs(self, node=None, result=None): """深度优先遍历(前序遍历)""" if result is None: result = [] if node is None: node = self.root if not node: return [] result.append(node) for child in node.children: self.traverse_dfs(child, result) return result #生成节点树字典数据 def node_to_dict(self,node): return { "node_name":node.name, "node_path":node.path, "node_status":node.status, "node_bwork":node.bwork, "node_vultype":node.vul_type, "node_vulgrade":node.vul_grade, "node_workstatus":node.get_work_status(), "children":[self.node_to_dict(child) for child in node.children] if node.children else [] } #树简化列表,用户传输到前端 def get_node_dict(self): node_dict = self.node_to_dict(self.root) #递归生成 return node_dict def find_node_by_name(self, name): """根据名称查找节点(广度优先)""" nodes = self.traverse_bfs() for node in nodes: if node.name == name: return node return None def find_node_by_nodepath_parent(self,node_path,node): node_names = node_path.split('->') node_name = node_names[-1] if node_name == node.name:#当前节点 return node else: if node_names[-2] == node.name: #父节点是当前节点 for child_node in node.children: if child_node.name == node_name: return child_node #走到这说明没有匹配到-则新建一个节点 newNode = TreeNode(node_name,node.task_id) node.add_child(newNode) return newNode else: return None #约束:不处理 def find_node_by_nodepath(self,node_path): '''基于节点路径查找节点,只返回找到的第一个节点,若有节点名称路径重复的情况暂不处理''' current_node = self.root #从根节点开始 node_names = node_path.split('->') layer_num = 0 for node_name in node_names: if node_name == "目标系统": layer_num +=1 continue if node_name == current_node.name:#根节点开始 layer_num += 1 continue else: bfound = False for child_node in current_node.children: if child_node.name == node_name: #约束同一父节点下的子节点名称不能相同 current_node = child_node layer_num += 1 bfound = True break if not bfound: #如果遍历子节点都没有符合的,说明路径有问题的,不处理中间一段路径情况 return None return current_node #更新节点的bwork状态 def update_node_bwork(self,node_path): node = self.find_node_by_nodepath(node_path) if not node: return False,False if node.bwork: node.bwork = False else: node.bwork = True return True,node.bwork def find_nodes_by_status(self, status): """根据状态查找所有匹配节点""" return [node for node in self.traverse_bfs() if node.status == status] def find_nodes_by_vul_type(self, vul_type): """根据漏洞类型查找所有匹配节点""" return [node for node in self.traverse_bfs() if node.vul_type == vul_type] #考虑要不要用tree封装节点的操作--待定 def update_node_status(self, node_name, new_status): """修改节点状态""" node = self.find_node_by_name(node_name) if node: node.status = new_status return True return False def update_node_vul_type(self,node_name,vul_type): """修改节点漏洞类型""" node = self.find_node_by_name(node_name) if node: node.vul_type = vul_type return True return False def print_tree(self, node=None, level=0): """可视化打印树结构""" if node is None: node = self.root prefix = " " * level + "|-- " if level > 0 else "" print(f"{prefix}{node.name} [{node.status}, {node.vul_type}]") for child in node.children: self.print_tree(child, level + 1) class TreeNode: def __init__(self, name,task_id,status="未完成", vul_type="未发现"): self.task_id = task_id #任务id self.name = name # 节点名称 #self.node_lock = threading.Lock() #线程锁 self.bwork = True # 当前节点是否工作,默认True --停止/启动 self.status = status # 节点测试状态 -- 由llm返回指令触发更新 #work_status需要跟两个list统一管理:初始0,入instr_queue为1,入instr_node_mq为2,入res_queue为3,入llm_node_mq为4,llm处理完0或1 self._work_status = 0 #0-无任务,1-待执行测试指令,2-执行指令中,3-待提交Llm,4-提交llm中, 2025-4-6新增,用来动态显示节点的工作细节。 self.vul_type = vul_type # 漏洞类型--目前赋值时没拆json self.vul_name = "" self.vul_grade = "" self.vul_info = "" self.children = [] # 子节点列表 self.parent = None # 父节点引用 self.path = "" #当前节点的路径 self.messages = [] # 针对当前节点积累的messages -- 针对不同节点提交不同的messages self.llm_type = 0 #llm提交类型 0--初始状态无任务状态,1--指令结果反馈,2--llm错误反馈 self.llm_sn = 0 #针对该节点llm提交次数 self._llm_quere = [] #待提交llm的数据 self.do_sn = 0 #针对该节点instr执行次数 self._instr_queue = [] #针对当前节点的待执行指令----重要约束:一个节点只能有一个线程在执行指令 self.his_instr = [] #保留执行指令的记录{“instr”:***,"result":***} #用户补充信息 self.cookie = "" self.ext_info = "" #设置用户信息 def set_user_info(self,cookie,ext_info): self.cookie = cookie self.ext_info = ext_info def copy_messages(self,childe_node): ''' 子节点继承父节点的messages,目前规则保留上两层节点的message信息 :param childe_node: :return: ''' tmp_messages = copy.deepcopy(self.messages) if not self.parent: childe_node.messages = tmp_messages else: parent_path = self.parent.path bfind = False for msg in tmp_messages: if msg["role"] == "system": childe_node.messages.append(msg) elif msg["role"] == "user": if not bfind: #获取user的node_path content = msg["content"] pattern = r"当前分支路径:(.+?)\n" match = re.search(pattern, content) if match: path = match.group(1) if parent_path in path:#当前节点的父节点路径在存入子节点messages childe_node.messages.append(msg) bfind = True #后续messages都保留 else: print("提交的用户提示词结构有问题!") else: childe_node.messages.append(msg) elif msg["role"] == "assistant": if bfind: childe_node.messages.append(msg) else: print("非法的信息体类型!") #添加子节点 def add_child(self, child_node): child_node.parent = self child_node.path = self.path + f"->{child_node.name}" #子节点的路径赋值 #child_node.messages = copy.deepcopy(self.messages) #传递messages #给什么时候的messages待验证#? self.copy_messages(child_node) #传递messages--只保留两层 self.children.append(child_node) #修改节点的执行状态--return bchange def update_work_status(self,work_status): if self._work_status == work_status: return False self._work_status = work_status return True def get_work_status(self): #加锁有没有意义--待定 return self._work_status #-------后期扩充逻辑,目前wokr_status的修改交给上层类对象------- def add_instr(self,instr): self._instr_queue.append(instr) def get_instr(self): return self._instr_queue.pop(0) if self._instr_queue else None def get_instr_user(self): return self._instr_queue def del_instr(self,instr): if instr in self._instr_queue: self._instr_queue.remove(instr) #指令删除后要判断是否清空指令了 if not self._instr_queue: self._work_status = 0 #状态调整为没有带执行指令 return True,"" else: return False,"该指令不在队列中!" def add_res(self,str_res): #结构化结果字串 self._llm_quere.append(str_res) def get_res(self): return self._llm_quere.pop(0) if self._llm_quere else None def get_res_user(self): return self._llm_quere def get_work_status(self): return self._work_status def updatemsg(self,newtype,newcontent,index): newmsg = {"llm_type":int(newtype),"result":newcontent} if self._llm_quere: self._llm_quere[0] = newmsg else:#新增消息 self._llm_quere.append(newmsg) #更新节点状态 self._work_status = 3 #待提交 return True,"" def is_instr_empty(self): if self._instr_queue: return False return True def is_llm_empty(self): if self._llm_quere: return False return True def __repr__(self): return f"TreeNode({self.name}, {self.status}, {self.vul_type})" if __name__ == "__main__": pass