from openai import OpenAI import os # 初始化OpenAI客户端 client = OpenAI( # 请用知识引擎原子能力API Key将下行替换为:api_key="sk-xxx", api_key="sk-fGBYaQLHykBOQsFwVrQdIFTsYr8YDtDVDQWFU41mFsmvfNPc", # 如何获取API Key:https://cloud.tencent.com/document/product/1772/115970 base_url="https://api.lkeap.cloud.tencent.com/v1", ) def main(): reasoning_content = "" # 定义完整思考过程 answer_content = "" # 定义完整回复 is_answering = False # 判断是否结束思考过程并开始回复 # 创建聊天完成请求 stream = client.chat.completions.create( model="deepseek-v3", # 此处以 deepseek-v3 为例,可按需更换模型名称 messages=[ {"role": "user", "content": "9.9和9.11谁大"} ], stream=True ) print("\n" + "=" * 20 + "思考过程" + "=" * 20 + "\n") for chunk in stream: # 处理usage信息 if not getattr(chunk, 'choices', None): print("\n" + "=" * 20 + "Token 使用情况" + "=" * 20 + "\n") print(chunk.usage) continue delta = chunk.choices[0].delta # 处理空内容情况 if not getattr(delta, 'reasoning_content', None) and not getattr(delta, 'content', None): continue # 处理开始回答的情况 if not getattr(delta, 'reasoning_content', None) and not is_answering: print("\n" + "=" * 20 + "完整回复" + "=" * 20 + "\n") is_answering = True # 处理思考过程 if getattr(delta, 'reasoning_content', None): print(delta.reasoning_content, end='', flush=True) reasoning_content += delta.reasoning_content # 处理回复内容 elif getattr(delta, 'content', None): print(delta.content, end='', flush=True) answer_content += delta.content if __name__ == "__main__": try: main() except Exception as e: print(f"发生错误:{e}")