You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

222 lines
8.8 KiB

import threading
import time
import multiprocessing
import importlib.util
from multiprocessing.managers import BaseManager
from myutils.ConfigManager import myCongif
from myutils.MyLogger_logger import LogHandler
from core.ACLModelManager import ACLModeManger
from core.DataStruct import ModelinData,ModeloutData
from threading import Lock
#2024-10-14model处理调整为独立子进程
def model_process(device,model,model_platform,m_p_status,brun,in_mq,out_mq):
# 初始化模型运行资源
context = None
if model_platform == "acl": # ACL线程中初始化内容
context = ACLModeManger.pro_init_acl(device) # 初始化acl资源,并创建context
# 初始化模型资源 -- 加载模型文件
ret = model.init_acl_resource() # 加载和初始化离线模型文件--om文件
if not ret:
print("初始化模型资源出错,退出线程!")
m_p_status.value = 2
return
#执行工作
m_p_status.value = 1
use_time = 0
icount = 0
while brun.value:
try:
inData = in_mq.get(timeout=0.1) #空时-block,直到有值 #(self,channel_id,img,image,scale_ratio, pad_size):
except:
#print("in_mq_空")
continue
if inData:
#print(f"{time.time()}--{inData.channel_id}--数据取出进行处理!")
s_time = time.time()
outputs = model.execute([inData.img,])#创建input,执行模型,返回结果 --失败返回None
e_time = time.time()
outdata = ModeloutData(inData.image,inData.scale_ratio,inData.pad_size,outputs,inData.channel_id)
del inData.img
#结果输出
if out_mq.full():
tmp = out_mq.get()
#print("model_输出mq满!")
del tmp
out_mq.put(outdata) # 需要确保out_mq只有在这里put
# else: #正常情况不会执行到该条件
# time.sleep(0.01)
icount += 1
use_time += (e_time - s_time)
if icount == 500:
avg_time = use_time / 500
print(f"model_process耗时--{avg_time}")
use_time = 0
icount = 0
#结束进程,释放资源
m_p_status.value = 0
while not in_mq.empty():
try:
in_mq.get_nowait() # Get without blocking
except Exception as e:
break # In case of any unexpected errors
# 反初始化
if model_platform == "acl":
try:
model.release() # 释放模型资源资源
# 删除模型对象
del model
# 释放ACL资源
ACLModeManger.pro_del_acl(device,context)
except Exception as e:
print(e)
class ModelNode:
def __init__(self,device,model_path,ch_max_count=1):
self.device = device
self.model_path = model_path
self.channel_id = [] #channel_id_list
self.model = None #模型对象
self.ch_max_count = ch_max_count
self.ch_count = 0 #关联启动的通道数量
self.count_Lock = Lock() #count的维护锁
self.model_platform = myCongif.get_data("model_platform")
self.logger = LogHandler().get_logger("ModelNode")
#分发线程相关
self.model_out_th = None
self.channel_dict = {}
self.cdict_Lock = Lock()
self.in_mq_Lock = Lock()
self.last_in_c_id = 0
#独立进程方案--共享参数
self.process = None
self.imq_count = ch_max_count * 20 #一个通道20帧缓冲区间
self.in_mq = multiprocessing.Queue(maxsize=self.imq_count)
self.out_mq = multiprocessing.Queue(maxsize=self.imq_count) #调整结构,多线程(预处理)-》in_mq-子进程-out_mq-》线程分发outdata->多线程(后处理)
self.brun = multiprocessing.Value('b',True) #brun.value = False,brun.value = True
self.m_p_status = multiprocessing.Value('i',0)
def __del__(self):
pass
def _import_model(self, model_path, threshold=0.5, iou_thres=0.5):
'''
根据路径动态导入模块
:param model_path: 模块路径
:param threshold: 置信阈值
:param iou_thres: iou阈值
:return:
'''
try:
module_path = model_path.replace("/", ".").rsplit(".", 1)[0]
print(module_path)
# 动态导入模块
module = importlib.import_module(module_path)
# 从模块中获取指定的类
Model = getattr(module, "Model")
# 使用 Model 类
model_instance = Model(model_path, threshold, iou_thres)
return model_instance
except ModuleNotFoundError as e:
print(f"Module not found: {e}")
return None
except AttributeError as e:
print(f"Class not found in module: {e}")
return None
except Exception as e:
print(f"An unexpected error occurred: {e}")
return None
def pro_add_data(self,data):
# try:
# self.in_mq.put(data,timeout=0.1)
# except multiprocessing.queues.Full:
# print("mdel_inmq输入满!")
# del data
with self.in_mq_Lock:
if self.ch_count>1 and self.last_in_c_id == data.channel_id:
return
self.last_in_c_id = data.channel_id
if self.in_mq.full():
tmp = self.in_mq.get()
#print("mdel_inmq输入满!")
del tmp
self.in_mq.put(data) # 需要确保out_mq只有在这里put
def _modle_th(self):
'''根据channel_id分发out_data到out_mq'''
s_time = time.time()
icount = 0
while self.brun.value:
try:
outdata = self.out_mq.get(timeout=0.1)
except:
continue
with self.cdict_Lock:
if outdata.channel_id in self.channel_dict:
self.channel_dict[outdata.channel_id].myappend(outdata) #后面就交给后处理线程了
else:
print(f"{outdata.channel_id}不在channel_dict里面")
# icount += 1
# if icount ==500:
# e_time = time.time()
# use_time = (e_time-s_time) /500
# print(f"{self.channel_id}_modle_th耗时--{use_time}秒")
# s_time = time.time()
# icount = 0
#2024-10-14调整为独立进程执行 -- 一个线程一个MQ MyDeque
def start_model_th(self,channel_id,out_mq):
with self.count_Lock:
with self.cdict_Lock:
if channel_id in self.channel_dict:
print(f"{channel_id}已经在channel_dict内")
return #这个可以删除老的,新增新的--后续验证,若需要则进行修改
self.channel_dict[channel_id] = out_mq #增加一个记录
print(f"新增一个channel节点--{channel_id}")
if self.ch_count == 0: #第一次启动--需要启动处理线程和进程
#加载自定义模型文件
self.model = self._import_model(self.model_path) # 动态加载模型处理文件py --置信阈值一直没使用
if not self.model:
self.logger.error("自定义模型文件加载失败,不启动model子进程")
self.m_p_status.value = 2
return
self.brun.value = True
#创建outMQ的分发线程
self.model_out_th = threading.Thread(target=self._modle_th)
self.model_out_th.start()
# 创建子进程
self.process = multiprocessing.Process(target=model_process,
args=(self.device,self.model,self.model_platform,
self.m_p_status,self.brun,self.in_mq,self.out_mq))
self.process.start()
self.ch_count += 1 #有通道调用一次就加一
def stop_model_th(self,channel_id):
with self.count_Lock:
with self.cdict_Lock:
if channel_id in self.channel_dict:
del self.channel_dict[channel_id]
self.ch_count -= 1
if self.ch_count == 0: #所有通道结束
self.brun.value = False
self.model_out_th.join() #等待线程结束
self.model_out_th = None
self.process.join() #等待子进程结束
self.process = None